

SPRACOVANIE A VIZUALIZÁCIA EXPERIMENTÁLNYCH DÁT

Ladislav ŠEVČOVIČ

http://people.tuke.sk/ladislav.sevcovic

Iste ste sa už ocitli v situáciách, že sa od vás chcel (niekedy aj dosť rýchlo) konkrétny výsledok a vy ste nevedeli kam z konopí . . .

MICHAL KAUKIČ, NUMERICKÁ ANALÝZA I.

ZNÁME MATEMATICKO-GRAFICKÉ PROGRAMY

• Gnumeric a Calc z kancelárskeho balíka OpenOffice sú plnohodnotnou náhradou za komerčný program Excel z MS Office, ďalej sú to

ZNÁME MATEMATICKO-GRAFICKÉ PROGRAMY

- Gnumeric a Calc z kancelárskeho balíka OpenOffice sú plnohodnotnou náhradou za komerčný program Excel z MS Office, ďalej sú to
- Veusz,
- LabPlot,
- Grace (xmgrace),
- Scigraphica,
- GNUPLOT,
- Octave a Octplot ako grafický výstup,
- PyLab,

ZNÁME MATEMATICKO-GRAFICKÉ PROGRAMY

- Gnumeric a Calc z kancelárskeho balíka OpenOffice sú plnohodnotnou náhradou za komerčný program Excel z MS Office, ďalej sú to
- Veusz,
- LabPlot,
- Grace (xmgrace),
- Scigraphica,
- GNUPLOT,
- Octave a Octplot ako grafický výstup,
- PyLab,
 - ► QtiPlot,
 - ► Kpl.

PROGRAM QtiPlot 0.8.5

- Výkonný programový balík na analýzu dát a kreslenie grafov
- http://soft.proindependent.com/qtiplot.html

PROGRAM QtiPlot 0.8.5

- Výkonný programový balík na analýzu dát a kreslenie grafov
- http://soft.proindependent.com/qtiplot.html
- Tabuľkové okno zobrazuje dáta na analýzu a na tvorbu grafu

PROGRAM QtiPlot 0.8.5

- Výkonný programový balík na analýzu dát a kreslenie grafov
- http://soft.proindependent.com/qtiplot.html
- Tabuľkové okno zobrazuje dáta na analýzu a na tvorbu grafu
- Grafické okno zobrazuje graf a výsledky "grafickej analýzy"

Obrázok 1: Grafické okno programu QtiPlot

► Negradientná Nelderova-Meadova metóda

- ► Negradientná Nelderova-Meadova metóda
- ► Gradientná Levenbergova-Marquardtova metóda

- Negradientná Nelderova-Meadova metóda
- ► Gradientná Levenbergova-Marquardtova metóda

QtiPlot - Non-linear curve fit						
Curve	table3 2					
Function	boxbod(x, a, b)					
	a*(1-exp(-b*x))					
	Parameter	Value Constant				
	1 a 100 🗆					
Initial guesses	2 b	0.75				
Algorithm	Scaled Levenberg-Marquardt					
Color	red					
From x= 1		Iterations 1000				
To x= 10		Tolerance 1e-4				
<< Edit function Delete Fit Curves Fit Cancel						

► Majme nameranú funkčnú závislosť $f_i = f(x_i)$ v bodoch i = 1, 2, ..., n.

- ► Majme nameranú funkčnú závislosť $f_i = f(x_i)$ v bodoch i = 1, 2, ..., n.
- Odchýlky modelovej F* a experimentálej funkcie f_i, vypočítané v nameraných bodoch, označíme e_i

$$e_i = F^*(x_i, p_1^*, p_2^*, \dots, p_k^*) - f_i.$$
(1)

- ► Majme nameranú funkčnú závislosť $f_i = f(x_i)$ v bodoch i = 1, 2, ..., n.
- Odchýlky modelovej F* a experimentálej funkcie f_i, vypočítané v nameraných bodoch, označíme e_i

$$e_i = F^*(x_i, p_1^*, p_2^*, \dots, p_k^*) - f_i.$$
(1)

Ďalej označíme

$$\Phi = \sum_{i=1}^{n} e_i^2.$$
⁽²⁾

- ► Majme nameranú funkčnú závislosť $f_i = f(x_i)$ v bodoch i = 1, 2, ..., n.
- Odchýlky modelovej F* a experimentálej funkcie f_i, vypočítané v nameraných bodoch, označíme e_i

$$e_i = F^*(x_i, p_1^*, p_2^*, \dots, p_k^*) - f_i.$$
(1)

Ďalej označíme

$$\Phi = \sum_{i=1}^{n} e_i^2.$$
⁽²⁾

▶ Úlohou je nájsť také odhady $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_k$ parametrov $p_1^*, p_2^*, \dots, p_k^*$, pre ktoré funkcia Φ (označovaná tiež ako *účelová* alebo *kriteriálna*) nadobúda minimum.

- ► Majme nameranú funkčnú závislosť $f_i = f(x_i)$ v bodoch i = 1, 2, ..., n.
- Odchýlky modelovej F* a experimentálej funkcie f_i, vypočítané v nameraných bodoch, označíme e_i

$$e_i = F^*(x_i, p_1^*, p_2^*, \dots, p_k^*) - f_i.$$
(1)

Ďalej označíme

$$\Phi = \sum_{i=1}^{n} e_i^2.$$
⁽²⁾

- ▶ Úlohou je nájsť také odhady $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_k$ parametrov $p_1^*, p_2^*, \dots, p_k^*$, pre ktoré funkcia Φ (označovaná tiež ako *účelová* alebo *kriteriálna*) nadobúda minimum.
- ► Nutnou podmienkou pre minimum je potom splnenie rovnice

$$\frac{\partial \Phi}{\partial p_j^*} = 2\sum_{i=1}^n e_i \frac{\partial e_i}{\partial p_i^*} = 2\sum_{i=1}^n e_i \frac{\partial F^*(x_i, p_1^*, \dots, p_k^*)}{\partial p_j} = 0, \ j = 1, 2, \dots, k.$$
(3)

► Predpokladáme, že máme k dispozíci *n* dvojíc meraných hodnôt (x_i, f_i) , pričom chyba veličiny x_i je zanedbateľne malá a chyba merania veličiny f_i je známa, rovná sa σ_{fi} .

- ► Predpokladáme, že máme k dispozíci *n* dvojíc meraných hodnôt (x_i, f_i) , pričom chyba veličiny x_i je zanedbateľne malá a chyba merania veličiny f_i je známa, rovná sa σ_{fi} .
- Optimálny postup pre dáta s normálnou distribúciou šumu je hľadanie váhovanej sumy štvorcov rezíduí

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{e_{i}}{\sigma_{fi}}\right)^{2} = \sum_{i=1}^{n} \left(\frac{F(x_{i}, \hat{p}_{1}, \dots, \hat{p}_{k}) - f_{i}}{\sigma_{fi}}\right)^{2}.$$
(4)

- ► Predpokladáme, že máme k dispozíci *n* dvojíc meraných hodnôt (x_i, f_i) , pričom chyba veličiny x_i je zanedbateľne malá a chyba merania veličiny f_i je známa, rovná sa σ_{fi} .
- Optimálny postup pre dáta s normálnou distribúciou šumu je hľadanie váhovanej sumy štvorcov rezíduí

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{e_{i}}{\sigma_{fi}}\right)^{2} = \sum_{i=1}^{n} \left(\frac{F(x_{i}, \hat{p}_{1}, \dots, \hat{p}_{k}) - f_{i}}{\sigma_{fi}}\right)^{2}.$$
(4)

Vo všetkých prípadoch χ² slúži, ako indikátor zhody medzi experimentálnymi a očakávanými hodnotami nejakej premennej.

- ► Predpokladáme, že máme k dispozíci *n* dvojíc meraných hodnôt (x_i, f_i) , pričom chyba veličiny x_i je zanedbateľne malá a chyba merania veličiny f_i je známa, rovná sa σ_{fi} .
- Optimálny postup pre dáta s normálnou distribúciou šumu je hľadanie váhovanej sumy štvorcov rezíduí

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{e_{i}}{\sigma_{fi}}\right)^{2} = \sum_{i=1}^{n} \left(\frac{F(x_{i}, \hat{p}_{1}, \dots, \hat{p}_{k}) - f_{i}}{\sigma_{fi}}\right)^{2}.$$
(4)

- Vo všetkých prípadoch χ² slúži, ako indikátor zhody medzi experimentálnymi a očakávanými hodnotami nejakej premennej.
- > Praktické pravidlo pre dobrý výsledok fitovania má tvar

$$\chi^2 \approx n - k \tag{5}$$

a platí pre jednu sériu meraní.

AKO SME TESTOVALI

- NIST National Institute od Standards and Technology
- http://www.itl.nist.gov/div898/strd/general/dataarchive.html

AKO SME TESTOVALI

- NIST National Institute od Standards and Technology
- http://www.itl.nist.gov/div898/strd/general/dataarchive.html

ZÁVER

Tabuľka 1: Porovnanie parametrov fitovania pre referenčné dáta NIST s hodnotami získanými z programov QtiPlot a Kpl, *a* a *b* sú odhadované parametre, σ_a a σ_b sú štandardné neistoty (smerodajné odchýlky) odhadovaných parametrov, RSD je reziduálna štandardná odchýlka (*Residual Standard Deviation*), SQ je suma štvorcov odchýlok (*Sum of Squres*) a Chi²/doF je redukovaná hodnota χ^2 , doF znamená *Degrees of Freedom* čiže *n* – *k*

		NIST	QtiPlot	Kpl
	a	2,07438	2,074 38	2,074 38
NoInt1	σ_a	0,016 53	0,00463	0,016 53
n - k = 10		RSD = 3,56753	Chi^2/doF=12,7273	chi-square $=$ 127,3
		SQ = 127,27272	Chi^2=127,273	
	а	213,809 41	213,809 53	213,809 00
	σ_a	12,35452	0,722 99	12,354 50
BoxBOD	b	0,547 24	0,547 24	0,547 24
n-k=4	σ_b	0,10456	0,006 12	0,104 56
		RSD = 17,08807	Chi^2/doF=292,002	chi-square=1168,008876
		SQ=1168,08877	Chi^2=1168,008	

$$\widetilde{\chi}^2 = \frac{\chi^2}{n-k}$$
, označená je ako Chi^2/doF

(6)

$$\tilde{\chi}^2 = \frac{\chi^2}{n-k}$$
, označená je ako Chi^2/doF (6)

• a štandardná neistota parametra je vypočítaná podľa vzťahu

$$\sigma^{\rm qti} = \sqrt{\frac{(\rm cov)_{ii}}{\rm Chi^2/doF}}.$$
(7)

$$\widetilde{\chi}^2 = \frac{\chi^2}{n-k}$$
, označená je ako Chi^2/doF (6)

• a štandardná neistota parametra je vypočítaná podľa vzťahu

$$\sigma^{\rm qti} = \sqrt{\frac{(\rm cov)_{ii}}{\rm Chi^2/doF}}.$$
(7)

• NIST údaj štandardnej neistoty parametra počíta podľa vzťahu

$$\sigma^{\text{nist}} = \sqrt{(\text{cov})_{ii}},\tag{8}$$

kde $(cov)_{ii}$ je v oboch prípadoch *kovariančná matica* parametrov regresie.

$$\widetilde{\chi}^2 = \frac{\chi^2}{n-k}, \text{ označená je ako Chi^2/doF}$$
(6)

• a štandardná neistota parametra je vypočítaná podľa vzťahu

$$\sigma^{\rm qti} = \sqrt{\frac{(\rm cov)_{ii}}{\rm Chi^2/doF}}.$$
(7)

• NIST údaj štandardnej neistoty parametra počíta podľa vzťahu

$$\sigma^{\text{nist}} = \sqrt{(\text{cov})_{ii}},\tag{8}$$

kde $(cov)_{ii}$ je v oboch prípadoch *kovariančná matica* parametrov regresie.

• Pri rovnosti kovariančných matíc, potom pre súvis oboch údajov platí

$$\sigma^{\text{nist}} = \sigma^{\text{qti}} \sqrt{\text{Chi}^2/\text{doF}}.$$
(9)

PROGRAM Kpl

• Kpl 3.3 – vyhladzovanie, optimalizácia, derivovanie, integrovanie ...

PROGRAM Kpl

- Kpl 3.3 vyhladzovanie, optimalizácia, derivovanie, integrovanie
- http://frsl06.physik.uni-freiburg.de/privat/stille/kpl/

PROGRAM Kpl

- Kpl 3.3 vyhladzovanie, optimalizácia, derivovanie, integrovanie
- http://frsl06.physik.uni-freiburg.de/privat/stille/kpl/

Obrázok 2: Importovanie a zobrazenie dát metódou ťahaj a pusť

POĎAKOVANIE

- Agentúra SR KEGA
- ► Ján BUŠA
 - http://people.tuke.sk/jan.busa/kega
- ► Michal KAUKIČ
- ► Peter MANN
 - http://people.tuke.sk/peter.mann/ubuntu
- > Peter POPOVEC

Vzdialenosť protónov v $H_2O r = 1,58 \cdot 10^{-10} m$

(A. Lötz a J. Voitländer: Bruker Report, Vol. 1, 40, 1991)

Vzdialenosť protónov v $H_2O r = 1,58 \cdot 10^{-10} m$

(A. Lötz a J. Voitländer: Bruker Report, Vol. 1, 40, 1991)

Obrázok 3: Merané a simulované spektrum JMR protónov v CaSO₄ · 2 H₂O $2\alpha = 10,7$ G (simulácia) $\Delta B_{exp} = 12,46$ G $r_{exp} = 1,503 \cdot 10^{-10}$ m

Obrázok 4: Jeden záznam spektra JMR CaSO₄ · 2 H₂O filtrovaný FFT $\Delta B_{exp} = 12,12 \text{ G}$ $r_{exp} = 1,517 \cdot 10^{-10} \text{ m}$